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Abstract—This study investigates the relationship between 

eigenvalues and timbral characteristics, specifically richness 

and brightness, in acoustic guitars through comprehensive 

vibration analysis. The research examines how the 

distribution and magnitude of eigenvalues in guitar strings 

and body systems correlate with perceived tonal qualities. 

The study reveals that the coupling between string modes and 

body resonances, characterized by their respective 

eigenvalues, plays a crucial role in determining timbral 

richness. This research provides valuable insights for luthiers 

and acoustic engineers, offering a mathematical framework 

for understanding and optimizing guitar design parameters 

to achieve desired tonal characteristics. 
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I.   INTRODUCTION 

The acoustic guitar is one of the most common musical 

instrument found in the world. The acoustic guitar 

phenomenon has been around for a long time and is 

recorded as history. This happened not without reason. The 

ease of use of the acoustic guitar is a significant factor in 

its popularity. Apart from that, the layers of tone color or 

timbre produced by each passage are unique to an acoustic 

guitar. The difference in timbre between one musical 

instrument and another is a very beautiful characteristic 

and is important to understand scientifically. 

One interesting, but rarely explored, application of 

eigenvalue theory is its use in analyzing the sound 

characteristics of musical instruments, in this case, the 

acoustic guitar. Eigenvalue theory itself is a fundamental 

concept studied in Linear Algebra and Geometry courses. 

The vibrations of the strings on an acoustic guitar can be 

modeled using partial differential equations, which 

produces a matrix system with eigenvalues that correspond 

directly to the frequency of the note. 

This research aims to explore the relationship between 

the eigenvalues of a matrix system that represents an 

acoustic guitar and the resulting tone color characteristics. 

The significance of this research lies in its contribution in 

building a bridge between abstract mathematical theories 

and measurable physical phenomena. A deep 

understanding of the relationship between the spectral 

structure of mathematical operators and acoustic 

characteristics can open new avenues in the design of 

musical instruments based on mathematical models. 

II.   THEORETICAL BASIS 

A. String Vibration 

String vibration is a fundamental phenomenon in 

musical acoustics that can be explained by the principles of 

mathematical physics. In an acoustic guitar string, 

vibration occurs when the string is plucked or disturbed 

from its equilibrium position. Mathematically, string 

vibration can be modeled using a one-dimensional wave 

equation, which is expressed as 
𝜕²𝑦

𝜕𝑡²
= 𝑐² 

𝜕²𝑦

𝜕𝑥²
 , 

where y is the string deflection, t is time, x is the position 

along the string, and c is the wave velocity on the string. 

In the context of an acoustic guitar, the string is attached 

at both ends (bridge and nut), which provides the boundary 

conditions  

y(0, t)  =  y(L, t)  =  0, 
in where L is the length of the string. This boundary 

condition determines the possible modes of vibration of the 

string. The solution of the wave equation with this 

boundary condition can be obtained using the method of 

separation of variables, which yields a function of the form 

y(x,t) = X(x)T(t). 

 

 
Figure 1. Standing waves on a string 

Source: http://hyperphysics.phy-astr.gsu.edu/ 

 
The frequency of vibration of a string depends on several 

physical parameters, including the length of the string (L), 

the tension in the string (T), and the mass per unit length of 

the string (μ). The fundamental frequency of a string is 
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given by the equation 

𝑓1 =
1

2
𝐿 √

T

μ
 , 

Whilst the n-th harmonic frequency of the string is given 

as fₙ = nf₁. 

 
 These harmonics plays the part in forming 

characteristics of each instrument. 

 

B. Eigenvalues 

Eigenvalues and eigenvectors represent key 

mathematical properties that help understand how matrices 

and linear transformations behave. These concepts are 

essential for analyzing how vectors change within vector 

spaces during transformations like rotation, compression, 

and stretching. 

Eigenvalues, which are scalar quantities, reveal the 

magnitude of scaling that occurs along specific directions 

during a linear transformation. They effectively measure 

how much a vector's length changes under transformation. 

The relationship between eigenvalues and eigenvectors is 

expressed through the fundamental equation 

𝐴𝑣 = 𝜆𝑣, 
where A represents the matrix, v is the eigenvector, and 

λ denotes the eigenvalue. In this context, the eigenvalue 

acts as a scaling coefficient that determines how much 

stretching or compression occurs. 

Eigenvectors are special non-zero vectors that maintain 

their original direction when subjected to the linear 

transformation described by the matrix. They identify the 

unique directions where the transformation results in pure 

scaling, without any directional change. When different 

eigenvalues have corresponding eigenvectors, these 

eigenvectors are linearly independent and form a 

fundamental basis for understanding the vector space.  

 

C. Timbre 

Timbre is the characteristic that distinguishes the sound 

of one instrument from another, even when playing the 

same note. The timbre is determined by the distribution and 

relative amplitude of the harmonics present in the sound. 

In the context of an acoustic guitar, timbre is influenced by 

a variety of factors including string material, body 

construction, and environmental conditions.  

Timbre can be categorized into several characteristics, 

the most common of which are richness and brightness, 

used to describe the uniqueness of a musical instrument's 

sound. 

Spectral analysis is a very important method in 

understanding the timbre characteristics of an acoustic 

guitar. The Fourier transform allows the decomposition of 

a complex signal into its constituent harmonic components. 

In practice, the Fast Fourier Transform (FFT) is used to 

efficiently analyze the frequency spectrum of a guitar 

sound. 

 
Figure 2. Fast Fourier Transform 

Source: https://www.nti-audio.com/en/support/know-how/fast-

fourier-transform-fft 

 

D. Eigenvalues and Acoustic Characteristics 

There is a correlation between the eigenvalue spectrum 

of a guitar system and its acoustic characteristics. The 

distribution of eigenvalues affects the frequency response 

of the system, which in turn determines the characteristics 

of the resulting tone color. The eigenvalues obtained from 

system analysis can be used to predict the resonance 

frequencies and vibration patterns that will occur. 

The eigenvalues of the guitar have a direct relationship 

to the richness of the sound through the distribution of 

vibration modes that occur. When a guitar is played, the 

various eigenvalues produce resonances at different 

frequencies. The more eigenvalues that are excited in the 

frequency range, the higher the complexity of the sound 

produced. This creates richness because of the formation 

of a more complete overtone series. 

The brightness of the guitar sound is correlated with the 

dominance of eigenvalues at high frequencies. Larger 

eigenvalues tend to produce vibration modes at higher 

frequencies. When acoustic energy is more concentrated in 

the high-frequency spectrum, a brighter sound character is 

produced. 

 
Figure 3. The structural symmetry of guitar body 

Source: https://www.mdpi.com/2073-8994/12/5/795 

 

The material and geometry of the guitar affect the 

distribution of eigenvalues. Changes in these physical 

parameters will change the eigenvalue spectrum, which is 

reflected in changes in the acoustic characteristics of the 

instrument. 
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III.   METHODOLOGY 

A. Research Design 

This study uses a quantitative approach with an 

experimental method to analyze the relationship between 

eigenvalues and timbre characteristics of acoustic guitars. 

The research design involves systematic measurements 

and analysis of acoustic and mathematical parameters of 

several acoustic guitar samples. This approach was chosen 

to allow for an in-depth analysis of the relationship 

between the mathematical structure (eigenvalues) and 

physical characteristics (timbre) of the instrument. 

 

B. Sampling 

Two acoustic guitars with different specifications were 

used to obtain adequate data variation. The guitars were 

selected based on differences in string material (steel and 

nylon), and body size (1/2 and full). Each guitar was fitted 

with strings with identical brand specifications to eliminate 

uncontrolled variables.  

The measuring equipment used included an iPhone 11 

microphone with digital signal processing software. 

Recording was carried out in a 3x4 meter non-soundproof 

room. 

 

C. Data Collection 

The data collection process was carried out 

systematically with a standardized protocol. The 

microphone was placed at a distance of 10 cm from the 

guitar sound hole, at a 45-degree angle to the surface of the 

guitar. Each string was plucked with a standard plectrum at 

the same position (12 cm from the bridge) to maintain 

consistency of excitation. 

For each string, recordings were made on all open 

strings (E, A, D, G, B, E) with a duration of 5 seconds per 

recording. Each measurement was repeated three times to 

ensure data reliability. The total data recorded was 12 

sound samples (2 guitars × 2 strings × 3 repetitions). All 

recordings were done at room temperature (25°C) to 

maintain consistency of measurement conditions. 

The sound recording results were stored in the form of 

wav files obtained by converting mp4a files from Voice 

Memo Software on Iphone 11 via website 

https://www.freeconvert.com/m4a-to-wav/ then processed 

with a Python programming language program. 

 

D. Data Analysis 

Data analysis is done in several stages using Python 3 

software. The first stage is audio processing from wav 

files. The process_audio_file function reads the wav file 

and returns the normalized data and the sample rate of 

the data. 

import numpy as np 
from scipy.io import wavfile 
def process_audio_file(filename): 
   sample_rate, data = wavfile.read(filename) 
   normalized_data = data / np.max(np.abs(data)) 
   window = np.hamming(len(data)) 
   windowed_data = normalized_data * window 
return windowed_data, sample_rate 

 

Fast Fourier Transform (FFT) is applied to each frame 

to obtain the frequency spectrum. In the program, FFT is 

performed using the built-in Scipy library. From this 

spectrum, information about the fundamental frequency, 

harmonic amplitudes, and spectral envelope is extracted. 

This spectral data is then used to construct a system matrix 

whose eigenvalues will be analyzed. 

The get_harmonic_ratios() function is designed to 

analyze the harmonic composition of an audio signal using 

Fast Fourier Transform (FFT) data. The way this function 

works starts by finding the fundamental frequency index in 

the frequency array using np.argmin(np.abs(frequencies - 

fundamental_freq)), then calculating its fundamental 

amplitude. After that, the function iterates for each 

harmonic from the 2nd to the nth harmonic, where each 

harmonic has a frequency that is a multiple of the 

fundamental frequency. For each harmonic, the function 

calculates the ratio of its amplitude to the fundamental 

amplitude, which provides information about the relative 

strength of each harmonic in the signal. 

Then, an analysis of the high-frequency content in the 

audio signal is carried out. The function accepts three 

parameters: the FFT data of the signal, the corresponding 

frequency array, and a cutoff frequency that defines the 

boundary between low and high frequencies (default 1000 

Hz). The final result returned is the ratio of high frequency 

energy to total energy, which gives an indication of how 

much high frequencies contribute to the overall signal. 

 
from scipy.fft import fft, fftfreq 
import numpy as np 
 
def spectral_matrix(fft_data, size=100): 
    magnitude = np.abs(fft_data[:size]) 
    magnitude = magnitude / np.max(magnitude)   
     
    matrix = np.zeros((size, size)) 
    for i in range(size): 
        for j in range(size): 
            matrix[i,j] = magnitude[abs(i-j)] 
    matrix += np.eye(size) * 1e-10 
    return matrix 
 
def get_harmonic_ratios(fft_data, frequencies, 
fundamental_freq, num_harmonics=8): 
    harmonic_ratios = [] 
    fundamental_idx = np.argmin(np.abs(frequencies -    

fundamental_freq)) 
    fundamental_amp = np.abs(fft_data[fundamental_idx]) 
    for n in range(2, num_harmonics + 2): 
        harmonic_freq = n * fundamental_freq 
        harmonic_idx = np.argmin(np.abs(frequencies -  

 harmonic_freq)) 
        harmonic_amp = np.abs(fft_data[harmonic_idx]) 
        ratio = harmonic_amp / fundamental_amp 
        harmonic_ratios.append(ratio) 
    return np.array(harmonic_ratios) 
 
def get_high_frequency_content(fft_data, frequencies, 
cutoff_freq=1000): 
    magnitudes = np.abs(fft_data) 
    high_freq_mask = frequencies > cutoff_freq 
    total_energy = np.sum(magnitudes**2) 

high_freq_energy = 
np.sum(magnitudes[high_freq_mask]**2) 

     
    high_freq_content = high_freq_energy / total_energy 
     
    return high_freq_content 
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The program then analyzes the timbre of the pre-

processed audio signal. Based on the parameters obtained 

from harmonic_ratios, high_frequency_content and 

spectral_matrix, the function calculates more interpretable 

timbre characteristics in the timbre_characteristics 

dictionary. These characteristics include 'brightness' 

calculated using the calculate_brightness function based on 

the spectral centroid and high-frequency content, and 

'richness' calculated as the average of the harmonic ratios. 

Finally, the function returns a dictionary containing both 

sets of information: the raw parameters in 'parameters' and 

the interpreted timbre characteristics in 'characteristics'. 

 
def calculate_brightness(spectral_centroid,  
high_freq_content): 
    normalized_centroid = np.clip(abs(spectral_centroid) / 

 5000, 0, 1) 
    normalized_high_freq = np.clip(abs(high_freq_content), 

 0, 1) 
    brightness = 0.6 * normalized_centroid + 0.4 * 

 normalized_high_freq 
    return np.clip(brightness, 0, 1) 
 
def analyze_timbre(signal, sample_rate): 
    fft_data = fft(signal) 
    frequencies = fftfreq(len(signal), 1/sample_rate) 
     
    magnitudes = np.abs(fft_data) 
    fundamental_idx = np.argmax(magnitudes[1:]) + 1 
    fundamental_freq = frequencies[fundamental_idx] 
     
    params = { 
        'harmonic_ratios': get_harmonic_ratios(fft_data,  
   frequencies, fundamental_freq), 
   'high_frequency_content':   
   get_high_frequency_content(fft_data,  
   frequencies), 
       'spectral_centroid': np.sum(frequencies *  
   magnitudes) / np.sum(magnitudes) 
    } 
     
    timbre_characteristics = { 
        'brightness': calculate_brightness( 
            params['spectral_centroid'], 
            params['high_frequency_content'] 
        ), 
        'richness': np.mean(params['harmonic_ratios']) 
    } 
     
    return { 
        'parameters': params, 
        'characteristics': timbre_characteristics 
    } 

 

 

E. Eigenvalue Calculation 

The eigenvalues are calculated using the np.linalg.eig() 

function implemented in the NumPy library. This function 

implements the concept of linear algebra where for a 

matrix A, the eigenvalues λ and eigenvectors v satisfy the 

equation Av = λv. In the context of sound analysis, these 

eigenvalues describe how much a linear transformation 

stretches or compresses the vector space of the audio 

signal. 

The system matrix constructed from the spectral data is 

analyzed to obtain the complete eigenvalue spectrum. This 

process produces a set of eigenvalues that represent the 

dynamic characteristics of the guitar system. 

After obtaining the eigenvalues, the program sorts the 

values from largest to smallest. This sorting is important 

because larger eigenvalues indicate more dominant 

components in the signal. Along with the sorting of the 

eigenvalues, the corresponding eigenvectors are also sorted 

to maintain the relationship between the two. 

The program then extracts several important features 

from the sorted eigenvalues. The first feature is the five 

largest eigenvalues that represent the main components of 

the signal. Second, the program calculates the ratio 

between the largest eigenvalue and the total number of all 

eigenvalues, which shows how dominant the principal 

component is. Third, the program calculates the 

distribution of eigenvalues through the ratio between the 

standard deviation and the mean of the eigenvalues. 

 
 
def analyze_audio_with_eigenvalues(filename): 
   signal, sample_rate = process_audio_file(filename) 
   fft_data = fft(signal) 
   spec_matrix = spectral_matrix(fft_data) 
   eigenvalues, eigenvectors = np.linalg.eig(spec_matrix) 
    
   sorted_indices = np.argsort(eigenvalues)[::-1] 
   eigenvalues = eigenvalues[sorted_indices] 
   eigenvectors = eigenvectors[:, sorted_indices] 
    
   timbre_results = analyze_timbre(signal, sample_rate) 
   eigenvalue_features = { 

'dominant_eigenvalues': eigenvalues[:5],   
'eigenvalue_ratio': eigenvalues[0] / 
np.sum(eigenvalues),   
'eigenvalue_spread': np.std(eigenvalues) / 
np.mean(eigenvalues)   

   } 
    

timbre_eigen_correlation = 
correlate_eigen_timbre(eigenvalue_features, 
timbre_results) 

   results =  { 
       'timbre_analysis': timbre_results, 
       'eigenvalues': eigenvalue_features, 
       'correlation': timbre_eigen_correlation 
   } 
 
   vis.visualize_analysis(results, filename) 
   print(results) 

 

F. Correlation and Interpretation 

Next, the program correlates the eigenvalue features 

with the timbre analysis results and visualizes the results. 

There are three functions that work to analyze the 

correlation between the eigenvalue characteristics of a 

signal and its timbre characteristics. The first function 

calculates the correlation between the distribution of 

eigenvalues and the brightness level of the sound. This 

function normalizes the distribution of eigenvalues by 

dividing it by the maximum value and ensuring that the 

value is in the range of 0 to 1, then compares it with the 

brightness value that has also been normalized. The 

correlation is calculated as the complement of the absolute 

value of the difference between the two normalized values, 

so that closer values will produce a higher correlation. 

The second function calculates the correlation between 

the ratio of eigenvalues and the richness level of the timbre. 

This function uses a slightly different approach by 

calculating the inverse of the ratio of eigenvalues (1 - ratio) 

before comparing it with the richness value. Like the 
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previous function, the correlation is calculated as the 

complement of the absolute value of the difference 

between the two values. This approach allows a direct 

comparison between the structural characteristics 

represented by the eigenvalues and the characteristics of 

the perceived timbre. 

The main function integrates the two previous functions 

to produce a comprehensive correlation analysis. This 

function accepts two parameters: eigenfeatures containing 

information about the distribution and ratio of eigenvalues, 

and timbre analysis results containing brightness and 

richness characteristics. This function returns a dictionary 

containing two correlation values: brightness correlation 

and timbre richness correlation. These results can be used 

to understand how strong the relationship is between the 

structural characteristics represented by the eigenvalues 

and the audible timbre characteristics, providing insight 

into how the mathematical properties of the vibratory 

system relate to auditory perception. 

 
def calculate_brightness_correlation(eigenvalue_spread,     
brightness): 

norm_spread = np.clip(eigenvalue_spread / 
np.max(eigenvalue_spread), 0, 1) 

    norm_brightness = np.clip(brightness, 0, 1) 
    correlation = 1 - abs(norm_spread - norm_brightness) 
    return correlation 
 
def calculate_richness_correlation(eigenvalue_ratio, 
richness): 
   inverse_ratio = 1 - eigenvalue_ratio 
   correlation = 1 - abs(inverse_ratio - richness) 
   return correlation 
 
def correlate_eigen_timbre(eigen_features,timbre_results): 
   correlations = { 
       'brightness_correlation':  

calculate_brightness_correlation( 
           eigen_features['eigenvalue_spread'], 
           timbre_results['characteristics']['brightness'] 
       ), 
       'richness_correlation':  
 calculate_richness_correlation( 
           eigen_features['eigenvalue_ratio'], 
           timbre_results['characteristics']['richness'] 
       ) 
   } 
   return correlations 
 
 

G. Visualization 

To accomodate reading the results of the data analysis, 

a Python program was created that uses the Matplotlib 

library to visualize the correlation between eigenvalues and 

guitar timbre characteristics. 

 

import matplotlib.pyplot as plt 

import numpy as np 

def plot_complete_analysis(results): 

    brightness_corr = 

results['correlation']['brightness_correlation'] 

    richness_corr = 

results['correlation']['richness_correlation'] 

    eigenvalues = 

results['eigenvalues']['dominant_eigenvalues'][:5] 

    brightness_char = 

results['timbre_analysis']['characteristics']['brightnes

s'] 

    richness_char = 

results['timbre_analysis']['characteristics']['richness'

] 

    fig, (ax1, ax2, ax3) = plt.subplots(1, 3, 

figsize=(20, 6)) 

    brightness_bar = ax1.bar(['Brightness'], 

[brightness_corr],  

                           color='g' if brightness_corr 

>= 0 else 'r') 

    ax1.set_title('Brightness Correlation', fontsize=14, 

pad=20) 

    ax1.grid(True, axis='y', linestyle='--', alpha=0.7) 

    ax1.axhline(y=0, color='black', linestyle='-', 

alpha=0.3) 

    ax1.text(0, brightness_corr, 

             f'Correlation: 

{brightness_corr:.4f}\nCharacteristic: 

{brightness_char:.4f}', 

             ha='center',  

             va='bottom' if brightness_corr >= 0 else 

'top', 

             bbox=dict(facecolor='white', alpha=0.8, 

edgecolor='none')) 

    brightness_margin = abs(brightness_corr) * 0.1 

    ax1.set_ylim(min(0, brightness_corr - 

brightness_margin),  

                 max(0, brightness_corr + 

brightness_margin)) 

    ax1.set_ylabel('Correlation Value') 

    richness_bar = ax2.bar(['Richness'], 

[richness_corr],  

                          color='g' if richness_corr >= 

0 else 'r') 

    ax2.set_title('Richness Correlation', fontsize=14, 

pad=20) 

    ax2.grid(True, axis='y', linestyle='--', alpha=0.7) 

    ax2.axhline(y=0, color='black', linestyle='-', 

alpha=0.3) 

    ax2.text(0, richness_corr, 

             f'Correlation: 

{richness_corr:.4f}\nCharacteristic: 

{richness_char:.4f}', 

             ha='center',  

             va='bottom' if richness_corr >= 0 else 

'top', 
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             bbox=dict(facecolor='white', alpha=0.8, 

edgecolor='none')) 

    richness_margin = abs(richness_corr) * 0.2 

    ax2.set_ylim(min(0, richness_corr - richness_margin),  

                 max(0, richness_corr + richness_margin)) 

    ax2.set_ylabel('Correlation Value') 

    indices = range(1, 6) 

    ax3.plot(indices, eigenvalues, 'b-o', linewidth=2, 

markersize=8) 

    ax3.set_title('Top 5 Eigenvalues', fontsize=14, 

pad=20) 

    ax3.grid(True, linestyle='--', alpha=0.7) 

    ax3.set_xlabel('Eigenvalue Index') 

    ax3.set_ylabel('Value') 

    for idx, value in enumerate(eigenvalues): 

        ax3.text(idx + 1, value, f'{value:.2f}', 

                ha='center', va='bottom') 

    ax3.set_xticks(indices) 

    plt.setp(brightness_bar, visible=True) 

    plt.setp(richness_bar, visible=True) 

    plt.tight_layout() 

     

    return fig 

 

def visualize_analysis(results, filename): 

    fig = plot_complete_analysis(results) 

    output_filename = f"{filename.rsplit('.', 

1)[0]}_analysis.png" 

    fig.savefig(output_filename, dpi=300, 

bbox_inches='tight') 

    plt.close() 

    print(f"Analysis visualization saved as: 

{output_filename}") 

     

    return output_filename 

 

IV.   RESULTS 

The data used in this study was obtained from 4 types 

of samples according to the following table, where each 

sample has a different combination of string materials and 

guitar sizes. 

 
Sample 

Number 

String Material Guitar Size 

1 Nylon ½ 

2 Steel ½ 

3 Steel 1 

4 Nylon 1 

 

 

 

 

Data 1 

 
Figure 4. Data 1 brightness correlation 

 

 
Figure 5. Data 1 richness correlation 

 

 
Figure 6. Data 1 eigenvalues 
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Data 2 

 
Figure 7. Data 2 brightness correlation 

 

 
Figure 8. Data 2 richness correlation 

 

 
Figure 9. Data 2 eigenvalues 

 

 

 

 

Data 3 

 
Figure 10. Data 3 brightness correlation 

 

 
Figure 11. Data 3 richness correlation 

 

 
Figure 12. Data 3 eigenvalues 
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Data 4 

 
Figure 13. Data 4 brightness correlation 

 

 
Figure 14. Data 4 richness correlation 

 
Figure 15. Data 4 eigenvalues 

 

The correlation of eigenvalues with brightness is 

positive in all samples. In contrast, the correlation of 

eigenvalues with richness is negative in all data samples. 

Sample 2 has the highest eigenvalue and brightness 

among the four, but the lowest richness. Sample 4 has the 

highest richness but the lowest brightness and eigenvalue. 

The experimental results show a relationship between 

eigenvalue, brightness, and richness. The positive 

correlation between eigenvalue and brightness indicates 

that the higher the eigenvalue, the brighter the guitar sound 

color. This can be explained physically, where high 

eigenvalues reflect concentrated resonance energy, 

especially at high frequencies. For example, Sample 2, 

with the highest eigenvalue, produces the highest 

brightness level compared to other samples. 

Conversely, the negative correlation between eigenvalue 

and richness indicates that high eigenvalues tend to reduce 

the complexity or richness of the sound spectrum. Richness 

is related to a more even distribution of energy across the 

harmonics of the sound. In sample 4, which has the lowest 

eigenvalue and brightness, the highest richness was found. 

This reflects that the energy is more distributed across the 

resonant modes, resulting in a richer and more balanced 

sound. 

Comparison between samples provides further insight. 

Sample 2 shows the highest brightness but the lowest 

richness, possibly due to stiffer strings or a smaller body, 

which favor resonance at high frequencies. In contrast, 

Sample 4 has the highest richness despite its low brightness 

and eigenvalues, possibly due to a larger body or more 

flexible strings, which favor resonance across the 

frequency modes. Samples 1 and 3 fall somewhere in the 

middle, showing a moderate balance between brightness 

and richness. 

V.   CONCLUSION 

The implications of these results are significant for 

guitar design. For brightness as the priority for producing 

crisp, bright melodies, a design like Sample 2 is more 

appropriate. However, for rich, full sounds, such as those 

required for chord or rhythm playing, a design like Sample 

4 is more desirable. Body size and string material clearly 

have significant, complementary effects; a larger body 

increases richness, while stiffer or higher-tension strings 

increase brightness.  

In conclusion, there is a clear trade-off between 

brightness and richness. The choice of guitar design, both 

in terms of body size and string material, should be tailored 

to musical needs. With additional data on string material 

type and body dimensions, this analysis could be expanded 

to provide more specific guidance for creating optimal 

guitar design. 
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